Chapters 2/3: 1D/2D Kinematics Thursday January 15th

- Review: Motion in a straight line (1D Kinematics)
- Review: Constant acceleration a special case
- •Chapter 3: Vectors
 - •Properties of vectors
 - **·Unit vectors**
 - Position and displacement
 - Velocity and acceleration vectors
- •Constant acceleration in 2D and 3D •Projectile motion (next week)
 - Projectile motion (next week)

Reading: up to page 36 in the text book (Ch. 3)

Summarizing

Displacement: $\Delta x = x_2 - x_1$

Average velocity:
$$v_{avg} = \overline{v} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

Average speed:
$$s_{avg} = \overline{s} = \frac{\text{total distance}}{\Delta t}$$

Instantaneous velocity:

$$v = \frac{dx}{dt} = \text{local slope of } x \text{ versus } t \text{ graph}$$

Instantaneous speed: magnitude of v

Summarizing

Average acceleration: $a_{avg} = \overline{a} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$

Instantaneous acceleration:

$$a = \frac{dv}{dt} = \text{local slope of } v \text{ versus } t \text{ graph}$$

In addition:

 $a = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2 x}{dt^2} = \text{curvature of } x \text{ versus } t \text{ graph}$

SI units for *a* are m/s² or m.s⁻²

Constant acceleration: a special case

Constant acceleration: a special case

Equations of motion for constant acceleration

One can easily eliminate either a, t or v_0 by solving Eqs. 2-7 and 2-10 simultaneously.

Equation		Missing
number	Equation	quantity
2.7	$v = v_0 + at$	$x - x_0$
2.10	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	${\cal V}$
2.11	$v^2 = v_0^2 + 2a(x - x_0)$	t
2.9	$x - x_0 = \frac{1}{2}(v_0 + v)t$	a
	$x - x_0 = vt - \frac{1}{2}at^2$	v_0

Important: equations apply ONLY if acceleration is constant.

Equations of motion for constant acceleration

These equations work the same in any direction, e.g., along x, y or z.

Equation number	Equation	Missing quantity
2.7	$v_y = v_{0y} + a_y t$	$y - y_0$
2.10	$y - y_0 = v_{0y}t + \frac{1}{2}a_yt^2$	v_y
2.11	$v_y^2 = v_{0y}^2 + 2a_y(y - y_0)$	t
2.9	$y - y_0 = \frac{1}{2}(v_{0y} + v_y)t$	a_{y}
	$y - y_0 = v_y t - \frac{1}{2} a_y t^2$	v_{0y}

Important: equations apply ONLY if acceleration is constant.

Equations of motion for constant acceleration

Special case of free-fall under gravity, $a_y = -g$. $g = 9.81 \text{ m/s}^2$ here at the surface of the earth.

Equation number	Equation	Missing quantity
number	$v_v = v_{0v} - gt$	$\frac{y-y_0}{y-y_0}$
	$y - y_0 = v_{0y}t - \frac{1}{2}gt^2$	V_y
	$v_y^2 = v_{0y}^2 - 2g(y - y_0)$	t
	$y - y_0 = \frac{1}{2}(v_{0y} + v_y)t$	a_{y}
	$y - y_0 = v_y t + \frac{1}{2}gt^2$	v_{0y}

Chapter 3: Introduction to Vectors

•A vector is a quantity that has both a magnitude and a direction, e.g., displacement, velocity, acceleration...

•Consider displacement as an example: if you travel from point A to B:

•It doesn't matter how you get from A to B, the displacement is simply the straight arrow from A to B.

•All arrows that have the same length and direction represent the same vectors, i.e. a vector is invariant under translation.

Adding vectors geometrically

•Note: overhead arrow is used to denote a vector quantity.

•If you travel from point A to point B, and then from point B to point C, your resultant displacement is the vector from point A to point C. B

 $\overrightarrow{S} C$

à

 $\vec{s} = \vec{a} + \vec{h}$

•Vectors are added graphically by placing the tail of one vector at the head of the other.

Rules for vector addition

•In spite of the fact that vectors must be handled mathematically quite differently from scalars, the rules for addition are quite similar.

Vector subtraction $\vec{b} + \left(-\vec{b}\right) = \vec{b} - \vec{b} = 0$

Vector subtraction

0

This will be important later: this is equivalent to putting vectors tailto-tail and going from the tip of \vec{b} to the tip of \vec{a} .

Vector subtraction

Vector subtraction

This will be important later: this is equivalent to putting vectors tailto-tail and going from the tip of \vec{a} to the tip of \vec{b} .

Unit vectors

 \hat{i} , \hat{j} and \hat{k} are unit vectors

They have length equal to unity (1), and point respectively along the x, y and z axes of a <u>right</u> <u>handed Cartesian</u> coordinate system.

$$\vec{a} = a_x \hat{i} + a_y \hat{j}$$

Unit vectors

 \hat{i} , \hat{j} and \hat{k} are unit vectors

Important Note:

Book uses: $\hat{i}, \hat{j}, \hat{k}$

ONCAPA uses:
$$\hat{x}, \hat{y}, \hat{z}$$

$$\vec{a} = a\cos\theta\hat{i} + a\sin\theta\hat{j}$$

Note: θ is <u>usually</u> measured from x to y (in a righthanded sense around the zaxis)

Adding vectors by components

Consider two vectors:

$$\vec{r_1} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$$

& $\vec{r_2} = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$

Then...

$$\Delta \vec{r}_{1 \to 2} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

&
$$\vec{r}_1 + \vec{r}_2 = (x_2 + x_1)\hat{i} + (y_2 + y_1)\hat{j} + (z_2 + z_1)\hat{k}$$

Appendices

The scalar product in component form

$$\vec{a} \cdot \vec{b} = \left(a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}\right) \cdot \left(b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}\right)$$
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

Because:

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$$

$$\hat{i}\cdot\hat{j}=\hat{j}\cdot\hat{k}=\hat{k}\cdot\hat{i}=0$$

This is the property of orthogonality

The vector product, or cross product $\vec{a} \times \vec{b} = \vec{c}$, where $c = ab\sin\phi$ $\vec{c} = \vec{a} \times \vec{b}$ $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$

?]

Direction of $\vec{c} \perp$ to both \vec{a} and \vec{b}

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\hat{i} \times \hat{j} = \hat{k}$$
 $\hat{j} \times \hat{i} = -\hat{k}$

$$\times \hat{k} = \hat{i} \qquad \qquad \hat{k} \times \hat{j} = -\hat{i}$$

$$\hat{k} \times \hat{i} = \hat{j}$$
 $\hat{i} \times \hat{k} = -\hat{j}$

(a)

a

$$a_x \hat{i} \times b_y \hat{j} = a_x b_y (\hat{i} \times \hat{j}) = a_x b_y \hat{k}$$

$$\vec{a} \times \vec{b} = \left(a_y b_z - b_y a_z\right)\hat{i} + \left(a_z b_x - b_z a_x\right)\hat{j} + \left(a_x b_y - a_y b_x\right)\hat{k}$$