## Chapters 2/3: 1D/2D Kinematics Thursday January 15th

-Review: Motion in a straight line (1D Kinematics)
-Review: Constant acceleration - a special case
-Chapter 3: Vectors
-Properties of vectors

- Unit vectors
- Position and displacement
-Velocity and acceleration vectors
-Constant acceleration in 2D and 3D
-Projectile motion (next week)
Reading: up to page 36 in the text book (Ch. 3)


## Summarizing

Displacement:

$$
\Delta x=x_{2}-x_{1}
$$

Average velocity: $\quad v_{a v g}=\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}$
Average speed:

$$
s_{a v g}=\bar{s}=\frac{\text { total distance }}{\Delta t}
$$

Instantaneous velocity:

$$
v=\frac{d x}{d t}=\text { local slope of } x \text { versus } t \text { graph }
$$

Instantaneous speed: magnitude of $v$

## Summarizing

Average acceleration: $\quad a_{a v g}=\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$
Instantaneous acceleration:

$$
a=\frac{d v}{d t}=\text { local slope of } v \text { versus } t \text { graph }
$$

In addition:

$$
a=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}=\text { curvature of } x \text { versus } t \text { graph }
$$

SI units for $a$ are $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{m} . \mathrm{s}^{-2}$


## Constant acceleration: a special case



## Constant acceleration: a special case

$$
v(\boldsymbol{t}) \mathrm{stop}^{2}=a
$$

0

## Constant acceleration: a special case



## Equations of motion for constant acceleration

 One can easily eliminate either $a, t$ or $v_{0}$ by solving Eqs. 2-7 and 2-10 simultaneously.Equation
number
2.7

Equation
$v=v_{0}+a t$
$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
2.10
2.11
2.9

$$
\begin{aligned}
& x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t \\
& x-x_{0}=v t-\frac{1}{2} a t^{2}
\end{aligned}
$$

Missing quantity

$$
v
$$

$$
t
$$

Important: equations apply ONLY if acceleration is constant.

## Equations of motion for constant acceleration

 These equations work the same in any direction, e.g., along $x, y$ or $z$.Equation number Equation
2.7 $v_{y}=v_{0 y}+a_{y} t$

Missing quantity

$$
y-y_{0}
$$

2.10

$$
y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}
$$

2.11

$$
v_{y}^{2}=v_{0 y}^{2}+2 a_{y}\left(y-y_{0}\right)
$$

$$
y-y_{0}=\frac{1}{2}\left(v_{0 y}+v_{y}\right) t
$$

$$
a_{y}
$$

$$
y-y_{0}=v_{y} t-\frac{1}{2} a_{y} t^{2}
$$

$$
v_{0 y}
$$

Important: equations apply ONLY if acceleration is constant.

## Equations of motion for constant acceleration

 Special case of free-fall under gravity, $a_{y}=-g$. $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ here at the surface of the earth.Equation number

Equation

$$
\begin{aligned}
v_{y} & =v_{0 y}-g t \\
y-y_{0} & =v_{0 y} t-\frac{1}{2} g t^{2} \\
v_{y}^{2} & =v_{0 y}^{2}-2 g\left(y-y_{0}\right) \\
y-y_{0} & =\frac{1}{2}\left(v_{0 y}+v_{y}\right) t \\
y-y_{0} & =v_{y} t+\frac{1}{2} g t^{2}
\end{aligned}
$$

$$
v_{y}
$$

$$
t
$$

$$
a_{y}
$$

$$
v_{0 y}
$$

## Chapter 3: Introduction to Vectors

- A vector is a quantity that has both a magnitude and a direction, e.g., displacement, velocity, acceleration...
-Consider displacement as an example: if you travel from point $A$ to $B$ :

- It doesn't matter how you get from $A$ to $B$, the displacement is simply the straight arrow from $A$ to $B$.
- All arrows that have the same length and direction represent the same vectors, i.e. a vector is invariant under translation.


## Adding vectors geometrically

-Note: overhead arrow is used to denote a vector quantity.
-If you travel from point $A$ to point $B$, and then from point $B$ to point $C$, your resultant displacement is the vector from point $A$ to point $C$.

-Vectors are added graphically by placing the tail of one vector at the head of the other.

## Rules for vector addition

- In spite of the fact that vectors must be handled mathematically quite differently from scalars, the rules for addition are quite similar.


$$
\vec{a}+\vec{b}=\vec{b}+\vec{a}
$$

Commutative law

## Vector subtraction



$$
\vec{b}+(-\vec{b})=\vec{b}-\vec{b}=0
$$

## Vector subtraction



## Vector subtraction

This will be important later: this is equivalent to putting vectors tail-to-tail and going from the tip of $\vec{b}$ to the tip of $\vec{a}$.


## Vector subtraction



## Vector subtraction



## Vector subtraction

This will be important later: this is equivalent to putting vectors tail-to-tail and going from the tip of $\vec{a}$ to the tip of $\vec{b}$.


## Components of vectors

Resolving vector components

$$
\begin{aligned}
& a_{x}=a \cos \theta \\
& a_{y}=a \sin \theta
\end{aligned}
$$

The inverse process

$$
\begin{aligned}
& a=\sqrt{a_{x}^{2}+a_{y}^{2}} \\
& \tan \theta=\frac{a_{y}}{a_{x}}
\end{aligned}
$$


$\hat{i}, \hat{j}$ and $\hat{k}$ are unit vectors
They have length equal to unity (1), and point respectively along the $x, y$ and $z$ axes of a right handed Cartesian coordinate system.

$$
\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}
$$


$\hat{i}, \hat{j}$ and $\hat{k}$ are unit vectors
Important Note:
Book uses: $\hat{i}, \hat{j}, \hat{k}$
LONCAPA uses: $\hat{x}, \hat{y}, \hat{z}$
$\vec{a}=a \cos \theta \hat{i}+a \sin \theta \hat{j}$
Note: $\theta$ is usually measured from $x$ to $y$ (in a righthanded sense around the $z$ axis)

Note: $\theta$ is usually measured from $x$ to $y$

## Unit vectors

$$
\begin{gathered}
90<\theta<180 \\
a_{x}<0 \\
a_{y}>0 \\
\hline a_{x}<0 \\
a_{y}<0 \\
180<\theta<270
\end{gathered}
$$

## Adding vectors by components

Consider two vectors:

$$
\& \begin{aligned}
& \vec{r}_{1}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k} \\
& \vec{r}_{2}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}
\end{aligned}
$$

Then...

$$
\Delta \vec{r}_{1 \rightarrow 2}=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k}
$$

\&

$$
\vec{r}_{1}+\vec{r}_{2}=\left(x_{2}+x_{1}\right) \hat{i}+\left(y_{2}+y_{1}\right) \hat{j}+\left(z_{2}+z_{1}\right) \hat{k}
$$

## Example:

$$
\xrightarrow{\substack{\text { Compute } \vec{a}+\vec{b} \\ \text { and } \vec{a}-\vec{b} \\ \\ \theta_{a}=5 \mathrm{~m}, b=10 \mathrm{~m} \\ \theta_{b}=36.13 \mathrm{deg} \\ \theta_{b}=36.87 \mathrm{deg}}}
$$

## Appendices

## The scalar product in component form

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \\
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{gathered}
$$

Because:

$$
\begin{aligned}
& \hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1 \\
& \hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0
\end{aligned}
$$

This is the property of orthogonality

## The vector product, or cross product

##  <br> (a)

$\vec{a} \times \vec{b}=\vec{c}$, where $c=a b \sin \phi$

$$
\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})
$$

Direction of $\vec{c} \perp$ to both $\vec{a}$ and $\vec{b}$

$$
\begin{array}{lc}
\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 \\
\hat{i} \times \hat{j}=\hat{k} & \hat{j} \times \hat{i}=-\hat{k} \\
\hat{j} \times \hat{k}=\hat{i} & \hat{k} \times \hat{j}=-\hat{i} \\
\hat{k} \times \hat{i}=\hat{j} & \hat{i} \times \hat{k}=-\hat{j}
\end{array}
$$

$$
\vec{a} \times \vec{b}=\left(a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\right) \times\left(b_{x} \hat{i}+b_{y} \hat{j}+b_{z} \hat{k}\right)
$$



$$
a_{x} \hat{i} \times b_{y} \hat{j}=a_{x} b_{y}(\hat{i} \times \hat{j})=a_{x} b_{y} \hat{k}
$$

$\vec{a} \times \vec{b}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{i}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{k}$

